Construction of spherical cubature formulas using lattices

نویسندگان

  • Pierre de la Harpe
  • Claude Pache
  • Boris Venkov
چکیده

We construct cubature formulas on spheres supported by homothetic images of shells in some Euclidian lattices. Our analysis of these cubature formulas uses results from the theory of modular forms. Examples are worked out on S for n = 4, 8, 12, 14, 16, 20, 23, and 24, and the sizes of the cubature formulas we obtain are compared with the lower bounds given by Linear Programming.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smolyak's Construction of Cubature Formulas of Arbitrary Trigonometric Degree Smolyak's Construction of Cubature Formulas of Arbitrary Trigonometric Degree Smolyak's Construction of Cubature Formulas of Arbitrary Trigonometric Degree

We study cubature formulas for d-dimensional integrals with a high trigonometric degree. To obtain a trigonometric degreè in dimension d, we need about d ` =`! function values if d is large. Only a small number of arithmetical operations is needed to construct the cubature formulas using Smolyak's technique. We also compare diierent methods to obtain formulas with high trigonometric degree. Abs...

متن کامل

Numerical Cubature from Archimedes' Hat-box Theorem

Archimedes’ hat-box theorem states that uniform measure on a sphere projects to uniform measure on an interval. This fact can be used to derive Simpson’s rule. We present various constructions of, and lower bounds for, numerical cubature formulas using moment maps as a generalization of Archimedes’ theorem. We realize some well-known cubature formulas on simplices as projections of spherical de...

متن کامل

Numerical Cubature Using Error-Correcting Codes

We present a construction for improving numerical cubature formulas with equal weights and a convolution structure, in particular equal-weight product formulas, using linear error-correcting codes. The construction is most effective in low degree with extended BCH codes. Using it, we obtain several sequences of explicit, positive, interior cubature formulas with good asymptotics for each fixed ...

متن کامل

On the Approximate Calculation of Double Integrals

Cubature formulas are obtained which are optimal or asymptotically optimal on given sets of functions. These formulas consist of line integrals which may be evaluated by optimal or asymptotically optimal quadrature formulas. The advantage of these formulas over the optimal and asymptotically optimal cubature formulas with rectangular-lattices of knots is shown.

متن کامل

On some cubature formulas on the sphere

We construct interpolatory cubature rules on the two-dimensional sphere, using the fundamental system of points obtained by Láın Fernández in [2,3]. The weights of the cubature rules are calculated explicitly. We also discuss the cases when this cubature leads to positive weights. Finally, we study the possibility to construct spherical designs and the degree of exactness.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005